发布时间:2007-12-27 所属栏目:温室技术 热度:℃
对减轻全球变暖问题或有重要意义 正常的野生紫色毛蕊(A)和实验用的改造品种(B)。叶片的泛黄说明了植物无力将糖类输送到叶片之外。 (图片提供:Ashlee McCaskill) 本报讯 众所周知…
对减轻全球变暖问题或有重要意义
正常的野生紫色毛蕊(A)和实验用的改造品种(B)。叶片的泛黄说明了植物无力将糖类输送到叶片之外。 (图片提供:Ashlee McCaskill)
本报讯 众所周知,植物会通过光合作用在叶片中产生糖类,但这些糖类是如何运输到机体其他部位(如花、根、果实等)的却一直没有得到实验证实。美国科学家的一项最新研究,终于验证了长期以来关于植物糖运输的理论猜测。这一成果不但有助于加深人们对植物基本生理过程的理解,还有望让科学家在将来通过基因工程方法增加植物光合作用率,增加二氧化碳吸收。相关论文发表在近日的美国《国家科学院院刊》(PNAS)上。 1991年,美国康奈尔大学的植物生物学教授Robert Turgeon提出了植物糖运输的“聚合物陷阱模型”。该理论认为,植物光合作用产生的蔗糖会逐渐扩散到植物的管状传输组织——韧皮部,并和其他营养物质一道,输送到机体的各个部分。而在韧皮部时,这些较小的糖分子会聚合形成更大、更复杂的糖结构,由于尺寸的原因,它们便再无法流回到叶子中去。 为了检验上述理论,在最新的研究中,Turgeon及其实验室的Ashlee McCaskill利用基因工程手段,改造了一种名为紫色毛蕊(Verbascum phoeneceum L.,与元参科家族十分接近)的植物,从而使与蔗糖聚合成较大分子相关的两个基因沉默。结果发现,紫色毛蕊中的糖类会重新回到叶子中来。 在正常植物中,一旦糖类在叶中累积,光合作用的速度就会变慢,植物也就不再“卖力”地从空气中吸收二氧化碳。反之,如果能够将糖类有效地从植物的叶中转移出去,比如提高植物韧皮部的装载率,那么光合作用的速率和二氧化碳吸收都会增加。 不过,McCaskill表示,“这一想法目前还处于理论阶段”。2006年《科学》杂志上的一篇论文表明,当大气中二氧化碳浓度增加时,由于一系列反馈回路的限制和约束,植物并不会摄入过量的二氧化碳,而“韧皮部装载就是制约植物吸收二氧化碳峰值能力的反馈之一”。屋顶绿化是指根据屋顶具体条件,选择小型乔木、低矮灌木和草坪、地被植物进行屋顶绿化植物配置,设置园路、座椅和园林小品等,提供一定的游览和休憩活动空间的复杂绿化。屋顶绿化能够使室内具有冬暖夏凉的感觉。
鸟巢温室项目结合了当前农业生产前沿技术、又结合了高科技能源信息技术,是其它任何普通温室所不能比的,特别是能源技术的生态技术,让温室三反季栽培,这是当前所有温室难以比拟的,再加上高科技立体化雾耕作技术的结合,使温室的产额数倍地高于传统线性平面的温室。
日光温室建筑设计中包括场地的选择、场地的布局以及温室各部位的尺寸、选材等。日光温室各部位的尺寸即是日光温室建筑设计参数,主要包括温室方位、温室跨度、高度、前后屋面角度、墙体和后屋面厚度、后屋面水平投影、防寒沟尺寸和温室长度等。
现行温室采用的建筑结构系统有很多种。最常见的温室结构型式有圆拱型、尖拱型、、锯齿型屋面、人字型屋面的温室。半拱状锯齿型的温室是新近发展起来的一种温室结构形式,其主要特点是通风性能良好。
特种水产类如蟹、龟、鳖等,一般在自然温度下生长需要3~5年,利用温室恒温养殖只需10个月到一年半的时间就可长成上市,能显著缩短饲养周期。进行温室恒温养殖,必须建造一个投资少,节能而实用的温室。
我国城市园林绿化大量地消耗着宝贵的水资源,许多专家学者疾声呼吁,应早日由“耗水型园林”向“节水型园林”方向发展,使城市绿化走上持续、健康的发展道路。对此我们就节水灌溉系统在温室花卉生产中的应用进行了试验研究。
温室基础为混凝土点式排列,其中必需的预埋件以及钢构件、连接到基础设施上的预埋螺栓、螺母将由中标方加工后运到工地。预制基础规格160×160×600,埋在500×500×600的土坑内