资源节约型智能温室控制系统的实现 - 温室技术,科技前沿,栽培,绿化技术 - 温室网-温室餐厅,阳光温室餐厅,生态餐厅,日光温室,屋顶花园-温室网 WenShi.Net

温室网

热门搜索: 生态餐厅  温室  绿色蔬菜
您的位置: 温室网 > 技术信息 > 温室技术 > 正文

资源节约型智能温室控制系统的实现

智能温室控制主要是根据外界环境的温度、湿度、CO2含量、光照以及风速、风向、雨量等气候因素,来控制温室内的温度、湿度、通风、光照,创造出适合作物生长的最佳环境,同时还需对影响作物生长的各种营养元素进行动态的配方管理。

  智能温室系统是近年来逐步发展起来的一种资源节约型高效农业发展技术,它是在普通日光温室的基础上,结合现代化计算机自控技术、智能传感技术等高科技手段发展起来的。自20世纪80年代以来,我国农业工程技术人员在吸收发达国家高科技温室生产技术的基础上,进行了温室中温度、湿度、二氧化碳和营养液等单项环境因子控制技术的研究,研制开发我国自己的智能温室控制系统。
1、智能温室控制的特点及系统构成
1.1智能温室控制的特点
  智能温室控制主要是根据外界环境的温度、湿度、CO2含量、光照以及风速、风向、雨量等气候因素,来控制温室内的温度、湿度、通风、光照,创造出适合作物生长的最佳环境,同时还需对影响作物生长的各种营养元素进行动态的配方管理。在这种控制中,温度、湿度、C02含量、光照等被控量之间存在着强烈的相互关系,某个被控量的改变,会影响到其他被控量的变化。
1.2智能温室控制的系统构成
  针对智能温室的特点,智能温室控制系统应是一种具有良好控制精度、较好的动态品质和良好稳定性的系统,对植物生长不同阶段的需求制定出监测的标准,对温室环境监测,并将测得的参数进行比较后进行调整。

  温室生态环境控制系统是由三部分组成:
  (1)信息采集信号输入部分,它包括室内、室外温度、湿度、CO2浓度及光照等;
  (2)信息转换与处理部分,主要功能是将采集的信息转换成计算机可识别的标准量信息进行处理,输出决策的指令;
  (3)输出及控制部分,控制风机、喷雾系统、遮阳系统及窗的开关等系统(如图1所示),使植物的生长实现车间化的生产控制过程。
2、智能温室自动控制的系统
2.1上位机部分
  上位机系统选用个人计算机,主要用于数据处理、通讯、系统控制、实时显示及修改各种控制数据、曲线,记录每天的各种采集数据,以备查阅。由于影响作物生长的因素(如温度、湿度等)大都是一种多输入、多输出、大滞后的非线性控制变量,还需要动态、实时、有效、可靠的人机接口(HMI)的可视化界面,因此,可以选用工控组态软件(MCGS),它为用户提供了从数据采集到数据处理、报警处理、流程控制、动画显示、报表输出、曲线显示等解决实际工程问题的各种方案与实施工具,用户可避开复杂的计算机软硬件问题。只需根据工程作业的需要和特点进行方案设计与组态配置,即可生成相应的应用软件,并且可以方便地组网,以实现系统的扩充。
  利用MCGS的上述特点,在HMI中可以完成以下功能:
  动态、实时地监测温室内、外的温度、湿度、CO2含量、风速、风向、雨量等变化值,并且可以通过RS—232/485转换器和下位机内部进行数据通讯,将画面上的模拟开关与下位机连接起来,当操作人员点击画面上的模拟开关时,就可控制温室内电机及阀门的实际开合与通断。除对参数进行监测外,还可将作物生长所需环境因素的范围值输人到上位机中,传入下位机进行对比分析,通过对窗、帘、通风等进行开关调节,使温室内的环境达到需要的要求。
  由于现场的下位机是装在控制柜内的,因此还必须设置下位机状态检测,使用户可以清楚地知道下位机的工作状态,加强系统的故障排错能力。
2.2、下位机部分
  下位机系统可以选用单片机和DSP(数字信号处理器),现代市场上主要使用单片机。它主要用于现场实地检测及控制,完成数据处理,根据农作物生长的控制曲线进行滴灌及营养液(肥料)的配比和实施,同时将控制及测量结果传送到上位机,并接受上位机的指令。
  由温室内各传感器采集到的数据通过总线传输到上位机,利用其丰富的指令进行数据处理,再通过RS—232/485转换器传输给上位机和执行机构动作,完成各项控制功能。
2.3、数据采集及测量部分
  通过各种高性能传感器对外界气候环境进行测量及数据采集,对温室内的温度、湿度、C02含量及养分的PH值进行实时数据采集,并将测量结果通过接口送至上位机中,上位机根据控制要求对整个温室进行综合控制。
2.4、执行部分
  执行部分包括天窗开合电机、遮阳帘开合电机、通风电机、灌溉阀门、加热阀门、CO2施放阀门、喷淋泵、压水泵、营养液的施放等,通过上位机输出的控制信号驱动执行机构以实现上述功能。为了保证执行机构的安全,各执行部件的限位开关的常闭点都接在电机线路里,用常开点作为上位机的输入信号,达到双保险的目的。
3、结束语
  智能控制温室综合了多方面的技术,为植物的生长创造了适宜的环境,使植物的产量与质量有了很大的提高,因此已成为高效农业的一个发展方向。智能温室控制系统无论是对新建温室还是原有温室的改造都有很好的应用前景。



最新图文

  • 12月01日屋顶绿化技术要点及设计图片欣赏
    12月01日 屋顶绿化技术要点及设计图片欣赏

    屋顶绿化是指根据屋顶具体条件,选择小型乔木、低矮灌木和草坪、地被植物进行屋顶绿化植物配置,设置园路、座椅和园林小品等,提供一定的游览和休憩活动空间的复杂绿化。屋顶绿化能够使室内具有冬暖夏凉的感觉。

    屋顶绿化技术要点及设计图片欣赏
  • 08月13日鸟巢生态温室建造技术详细解读和分析
    08月13日 鸟巢生态温室建造技术详细解读和分析

    鸟巢温室项目结合了当前农业生产前沿技术、又结合了高科技能源信息技术,是其它任何普通温室所不能比的,特别是能源技术的生态技术,让温室三反季栽培,这是当前所有温室难以比拟的,再加上高科技立体化雾耕作技术的结合,使温室的产额数倍地高于传统线性平面的温室。

    鸟巢生态温室建造技术详细解读和分析
  • 08月11日日光温室建筑设计
    08月11日 日光温室建筑设计

    日光温室建筑设计中包括场地的选择、场地的布局以及温室各部位的尺寸、选材等。日光温室各部位的尺寸即是日光温室建筑设计参数,主要包括温室方位、温室跨度、高度、前后屋面角度、墙体和后屋面厚度、后屋面水平投影、防寒沟尺寸和温室长度等。

    日光温室建筑设计
  • 08月10日温室自动暗渗灌溉的追肥技术
    08月10日 温室自动暗渗灌溉的追肥技术

      温室的建造涉及多个系统,但无外乎温室结构,遮阳系统,保温系统,降温系统,灌溉系统和其他等等。现在本文就温室建设中自动暗渗灌溉的追肥技术做一个简单介绍。

    温室自动暗渗灌溉的追肥技术
  • 08月09日某智能温室设计方案
    08月09日 某智能温室设计方案

    近年因为现代农业的发展,温室行业越来越受到各地的关注,但关于温室设计却没有统一的规范,现就某一智能温室的设计方案举例,展示一下智能温室的设计要求:

    某智能温室设计方案
  • 08月05日温室结构的选型和工程设计
    08月05日 温室结构的选型和工程设计

    现行温室采用的建筑结构系统有很多种。最常见的温室结构型式有圆拱型、尖拱型、、锯齿型屋面、人字型屋面的温室。半拱状锯齿型的温室是新近发展起来的一种温室结构形式,其主要特点是通风性能良好。

    温室结构的选型和工程设计
  • 08月05日特种水产养殖温室设计技术
    08月05日 特种水产养殖温室设计技术

    特种水产类如蟹、龟、鳖等,一般在自然温度下生长需要3~5年,利用温室恒温养殖只需10个月到一年半的时间就可长成上市,能显著缩短饲养周期。进行温室恒温养殖,必须建造一个投资少,节能而实用的温室。

    特种水产养殖温室设计技术
  • 06月16日节水灌溉系统在温室花卉生产中的应用试验研究
    06月16日 节水灌溉系统在温室花卉生产中的应用试验研究

    我国城市园林绿化大量地消耗着宝贵的水资源,许多专家学者疾声呼吁,应早日由“耗水型园林”向“节水型园林”方向发展,使城市绿化走上持续、健康的发展道路。对此我们就节水灌溉系统在温室花卉生产中的应用进行了试验研究。

    节水灌溉系统在温室花卉生产中的应用试验研究
  • 06月19日GLP-832型连栋塑料温室大棚设计要求
    06月19日 GLP-832型连栋塑料温室大棚设计要求

    温室基础为混凝土点式排列,其中必需的预埋件以及钢构件、连接到基础设施上的预埋螺栓、螺母将由中标方加工后运到工地。预制基础规格160×160×600,埋在500×500×600的土坑内

    GLP-832型连栋塑料温室大棚设计要求
  • 06月19日GSW-8430型连栋塑料温室设计方案
    06月19日 GSW-8430型连栋塑料温室设计方案

    薄膜温室顶通风系统采用电动卷膜开窗机构,利用顶部开窗交换空气、降低温室内部温度。通风窗位于温室天沟两侧,顶窗宽度1.2m。

    GSW-8430型连栋塑料温室设计方案